S1 Appendix. Supplementary analysis of other possible « levels

In principle, & = 0.05 and o = 0.005 are not the only two possibilities, because any number between zero and
one could be chosen as the « level. Thus, in this supplement we treat « level as a continuously varying value
and investigate how its optimal value depends on research scenario parameters.

The overall payoff Pr (Eq 8) is a function of two parameters controlled by the researcher, o and sample
size, plus six parameters inherent in the research scenario, d, 7, Ptp, Prp, Pin, and Pgy,. For any given values of
the research scenario parameters, standard numerical search procedures [I] can be used to find the optimal
combination of « and sample size—that is, the combination leading to the highest payoff within that scenario.
These search procedures treat « as a continuously varying numerical quantity and can find whatever value is
optimal, even if it is something other than a = 0.05 or a = 0.005.

Fig [Al shows the optimal « levels for a variety of scenarios, and Fig[Bl shows the corresponding optimal
sample sizes. Inspection of Fig[Al reveals that the optimal « level depends very strongly on the base rate, 7, and
on the payoff associated with false positives, Pr,. At one extreme, with a very low base rate (i.e., # = 0.01) and
a relatively high FP cost (i.e., Py, = —5), the optimal « level is less than 0.001. In contrast, with a relatively
large base rate (i.e., # = 0.5) and a relatively low FP cost (i.e., Py, = —2), the optimal « level is greater than
0.1. Given that the optimal « varies across at least two orders of magnitude, the discussion over whether to use
a = 0.05 or a = 0.005 actually seems somewhat narrow. Perhaps more importantly, the figure shows quite
clearly that researchers cannot hope to identify the appropriate « level without having good quantitative
information about the base rate of true effects and about the cost of FPs. Although base rate estimates have
been considered in some recent discussions of « levels [2], FP costs have not been addressed quantitatively.

Surprisingly, Fig [Al also shows that the optimal « level is essentially independent of the effect size, d, and it
is also relatively independent of the FN cost, at least within the ranges considered here. The reasons for such
independence are not entirely clear, but in principle the independence makes it more feasible to identify
optimal « levels, because it reduces the amount of prior knowledge that researchers must obtain to identify
these levels (i.e., d and Py, need not be identified). In practice, however, information about d is clearly needed
to identify the optimal («, ns) pair because it is required for choosing ng, as will be seen next.

Fig [Bl shows the optimal sample sizes associated with each of the optimal « levels shown in Fig[Al Quite
reasonably, much larger samples are needed with smaller true effect sizes, and larger samples are also needed
when the base rate of true effects is low. Interestingly, at least for the conditions shown in Fig[Al the sample
size increases for smaller effects to an extent that produces approximately the same levels of power for all three
effect sizes. Thus, not only is the optimal « level rather independent of effect size, but so is the optimal level of
power. It is disconcerting, however, that the optimal sample sizes are typically 300+ for medium-sized effects;
sample sizes that large are rare in many research areas where two-group comparisons are common. For
repeated measures designs (i.e., one-sample ¢-tests), analogous computations indicate that the optimal sample
sizes are approximately 25% of those shown in Fig Bl

Fortunately, further investigation reveals that the choice of the exactly optimal « level may not be very
important in practice, at least under conditions similar to those considered here (i.e., 7 < 0.5, Ps, and Py, of
-2 or -5). Fig[C shows expected payoffs for researchers using o = 0.005, o = 0.05, or the exact « yielding the
maximum expected payoff, each with its own optimal sample size. Critically, in these scenarios researchers can
achieve nearly the same payoff by using whichever is better of a = 0.005 of o = 0.05, without determining the
best a level even more precisely.

We also conducted a more detailed analysis to see which values of a would be optimal using a wider range
of payoff values. To that end, we computed the optimal combination of « level and sample size for two-sample
t-tests using all of the scenarios that could be constructed from combinations of the parameter values listed in
Table [Al Excluding approximately 11% degenerate scenarios in which the expected payoff was maximized by
taking the minimum possible sample size (see [3], Appendix C), the optimal « levels ranged all the way from a
minimum of 0.0001 to a maximum of 0.876. Interestingly, a logistic model predicted the optimal « levels from
the scenario parameters fairly accurately. In this model, the to-be-predicted score was

Y = log ( ——optimel ) (1)
— Qloptimal

and Y was predicted as a linear function of the parameters in Table [A] with a constant of -4.14 and with the
slopes shown in the table, with an overall R? = 0.92.



The slopes in Table [Al show how the optimal values of o are affected by the values of the scenario
parameters, and the sizes of the parameter effects are most clearly illustrated with numerical examples. As a
baseline condition, assume Py, = =2, Py, =0, Py, =0, 7 = 0.1, and d = 0.2. For this condition, the model
predicts an optimal o = 0.01. If the loss associated with a false positive is reduced to Py, = —1, the predicted
optimal « level increases to 0.018. The gain associated with a true negative outcome, P, has a much stronger
influence on the predicted cwptimal, perhaps because there were so many opportunities for true negatives with
the low base rates used in these computations. For example, a small change from the baseline condition to
Pin = 0.2 increases qoptimal t0 0.036. Similarly, aoptimal Was quite sensitive to the base rate of true effects;
changing from the baseline to m = 0.3 yields predicted aoptimal = 0.04. In contrast, there seem to be relatively
small influences of the effect size, d, and of the loss associated with a false negative, Py, at least over
moderate ranges of those values. For example, the predicted cigptimal values remain at 0.01 when there is a
change from the baseline to Py, = —1 or to d = 0.8.

Table A. Combinations of parameter values for which optimal « levels were computed, and the slope of each
parameter value in a linear model predicting the Y values shown in Equation [l

Parameter Values Slope
Pip 1

Pip -5,-4.5,-4.0, ... -0.5 0.575
Pin 0, 0.02, 0.04, ... 0.10 6.463
Prn -5,-4.5,-4.0,... 0 0.026
i 0.05, 0.1, 0.2, 0.4 6.982
d 0.2, 0.5, 0.8 0.043
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Fig A. Optimal «a levels. The optimal a level, agptimal, as a function of the base rate of true effects, m, the

size of the true effect when it is present d, and the payoffs associated with false positives, Py, and false
negatives, Py,. Computations were carried out for studies analyzed with two-sample ¢-tests.
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Fig B. Optimal sample sizes. Optimal sample sizes, ns optimal, corresponding to the optimal « levels shown

in Fig[Al
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Payoff

Fig C. Expected payoffs with different « levels. Expected payoff as a function of base rate, 7, with

a = 0.005, o = 0.05, or the optimal «, for scenarios differing in the payoffs associated with false positives (Pyp)
and false negatives (Pyy,). All payoffs were computed with an effect size of d = 0.5 and with the optimal
sample size.

AP, =-2,P, =2
p fn

B:P, =2, P, =5
fp fn
25 ¢ ) 25 ¢
2=0.005 &
L3 C ] = ." '
20} =005 A 20}
-------- Optlmal o .'./

Payoff




